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SUMMARY 
Three techniques are presented to enhance the control of grid-point distribution for a class of algebraic grid 
generation methods known as the two-, four- and six-boundary methods. First, multidimensional stretching 
functions are presented, and a technique is devised to construct them based on the desired distribution of 
grid points along certain boundaries. Second, a normalization procedure is proposed which allows more 
effective control over orthogonality of grid lines at boundaries and curvature of grid lines near boundaries. 
And third, interpolating functions based on tension splines are introduced to control curvature of grid lines 
in the interior of the spatial domain. In addition to these three techniques, consistency conditions are derived 
which must be satisfied by all user-specified data employed in the grid generation process to control grid- 
point distribution. The usefulness of the techniques developed in this study was demonstrated by using them 
in conjunction with the two- and four-boundary methods to generate several grid systems, including a three- 
dimensional grid system in the coolant passage of a radial turbine blade with serpentine channels and pin 
fins. 

KEY WORDS Grid generation Transfinite interpolation Stretching functions Blending functions 

INTRODUCTION 

Even though considerable progress has been made in grid generation, the generation of good 
quality structured grid systems in geometrically complex, three-dimensional spatial domains 
remains a difficult problem. This is because, for such domains (e.g. see Figure l), grid lines or 
surfaces may need to make many sharp twists and turns in the interior of the domain in addition 
to being clustered at the right places, and made nearly orthogonal and as smooth as possible. In 
order to generate grid systems for such domains, the grid generation method must be able to exert 
precise control over how grid points are to be distributed. 

Of the grid generation methods available, control over grid-point distribution is either indirect 
(and hence not transparent to the user) or direct but inadequate. In elliptic grid generation 
methods, grid-point distribution is controlled indirectly through source terms in the partial 
differential equations.' Even though these source terms are well defined, they involve user 
specified parameters that must be fine-tuned for each problem. For three-dimensional geometries, 
the fine tuning of these parameters can be costly, since these methods require the solution of 
quasi-linear systems of partial differential equations. In algebraic grid generation methods, the 
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Figure 1. Coolant passage within a radial turbine blade: (a) cutout view; (b) schematic drawing 

control over grid-point distribution is more direct (e.g. through the use of stretching functions). 
Although these methods also involve parameters that need to be fine-tuned for each problem, the 
fine tuning can be done very efficiently since algebraic methods do not require the solution of 
partial differential equations. The drawback of algebraic methods is that the control needed to 
obtain acceptable grid systems is often inadequate. 
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In this paper, we present several techniques that enhance the control of grid-point distribution 
for a class of algebraic grid generation methods based on transfinite interpolation which are 
known as the two-, four- and six-boundary methods2 First, multidimensional stretching func- 
tions are proposed and a technique is devised to construct them based on the desired grid-point 
distribution along certain boundaries. Second, a normalization procedure is proposed which 
enables more effective control over orthogonality of grid lines at boundaries and curvature of grid 
lines near boundaries. Third, interpolating functions based on tension splines are introduced to 
control the curvature of grid lines in the interior of the spatial domain. Finally, a set of 
consistency conditions is derived that must be satisfied by all user-specified data employed in the 
grid generation process to control grid-point distribution. The usefulness of the techniques 
presented in this paper was demonstrated by applying them to generate several grid systems 
including a three-dimensional grid system for the coolant passage of a radial turbine blade with 
serpentine channels and pin fins. 

In the following sections, the three techniques for enhancing control of grid-point distribution 
are described along with examples of grid systems generated using these techniques. The 
consistency conditions formulated in this study are given in the Appendix. 

This paper assumes that the reader is familiar with algebraic grid generation methods based 
on transfinite interpolation. Readers unfamiliar with these methods are referred to References 1 
and 2. 

MULTIDIMENSIONAL STRETCHING FUNCTIONS 

In algebraic grid generation, stretching functions are important for controlling the distribution of 
grid points in the physical domain. To date, all stretching functions have been one- 

The use of one-dimensional stretching functions has the major limitation that all 
grid lines in the same direction have the same amount of stretching. For many complex-shaped 
geometries, these stretching functions do not provide the control that is needed to obtain 
acceptable grid systems. 

To improve the control over grid-point distribution in algebraic grid generation, this study 
proposes the construction of multidimensional stretching functions to replace the one-dimen- 
sional stretching functions. Multidimensional stretching functions will allow the stretching to 
vary from one grid line to the next. Since grid systems generated by algebraic methods are 
strongly influenced by the grid-point distribution on the boundaries of the spatial domain, we 
present here a method for constructing multidimensional stretching functions based on the 
desired grid-point distribution on the edges of the spatial domain. As used here, the edges are the 
four plane or twisted curves that define the boundary of a surface. 

To illustrate the method devised here for constructing multidimensional stretching functions, 
we construct a stretching function for the 5-grid lines in a three-dimensional grid system. In this 
grid system, x, y and z are the co-ordinates in the physical domain; and 5, q, and ( are the co- 
ordinates in the transformed domain. The transformed domain is taken as the region in which the 
co-ordinates 5, r,~ and 5 vary between zero and one. For the 5-grid lines, the edges which affect 
grid-point distribution are the ones located at ( q = O ,  (=O), (q=1, (=O), (q=O, (= 1) and ( q = l ,  
[= 1). With the relevant edges identified, suppose fo,((),  f l o ( ( ) ,  f o , ( ( ) ,  and e,,(t) are the one- 
dimensional stretching functions which give the desired grid-point distribution along the edges at 
(q=Q,(=O),(q=l,(=O),(q=O, (=l)and(q=l,(=l),respectively. Sinceeachedgeisalineand 
hence one-dimensional, these stretching functions can easily be obtained. Once the one-dimen- 
sional stretching functions for the relevant edges have been determined, the multidimensional 
stretching function for the (-grid lines in the entire domain is constructed by interpolation of the 



300 E. STEINTHORSSON, T. I-P. SHIH AND R. J. ROELKE 

one-dimensional stretching functions at the edges. If linear interpolation is used, then we obtain 
the following multidimensional stretching function: 

f ( L  45 o = c f o o ~ t ~ ~ ~ - ~ ~ + ~ l o ~ ~ ~ t t l ~ ~ - ~ ~ + ~ f o l ~ ~ ~ ~ ~ - ~ ~ + f l l ~ t ~ ~ l ~ .  (1) 

&t, v ,  0 = C f O O ~ O ~ l ~ t t ~  + f10(5)hz('l)l h l ( 0  + C f O l  (ml (tt) + f11(5)h2(1)1 h 2 ( 0 ,  (2) 

h 1 ( ~ ) = 2 ~ ~ - 3 ~ ~ + 1 ,  h,(s)= -2s3+3s2. (3% b) 

If cubic polynomials as in Hermite interpolation are used, then we obtain 

where 

The flexibility of the approach described above for constructing multidimensional stretching 
functions can be increased further if one realizes that it is unnecessary to work with analytical 
stretching functions for the edge. This is because we only need the values of the stretching 
functions at the grid points on the edges. Thus, one can, for example, specify the location of the 
grid points along an edge directly, then use arc length to calculate an equivalent stretching 
function that corresponds to the distribution of grid points along the edge, and finally, use the 
equivalent stretching function to construct a multidimensional stretching function as shown 
above. 

As an example of how an equivalent stretching function can be obtained, suppose (xi, yi, zi) 
with i =  1, . . . , IL are the specified grid-point locations on the edge located at ( t = O ,  q=O),  and 
we want to construct an equivalent stretching function for that edge. In this case, the required 
stretching function too can be constructed from the specified grid-point distribution by using 
approximate arc length as follows: 

foO(t i )=o for i =  1, (44  

d .  f o o ( t i ) = l  4, 
for i=2,3,4, . . . , IL,  

The approach described above for deriving the multidimensional stretching function for the 5- 
grid lines [i.e. f (  5, q, [)] can also be applied to derive the multidimensional stretching functions 
for the q- and [-grid lines [i.e. #(, q, [) and [(t, q, c ) ] .  The approach used to compute fo0 from 
arc length can also be applied to compute equivalent one-dimensional stretching functions for 
any edge or grid line. 

Above, we have illustrated how multidimensional stretching functions can be constructed from 
one-dimensional stretching functions at the edges of a three-dimensional grid system. This 
approach can be extended to include one or more one-dimensional stretching functions for grid 
lines that lie in between the edges or in the interior of the grid system in order to further increase 
control over grid-point distribution throughout the domain. An approach different from the one 
described above is to construct multidimensional stretching functions by applying a single one- 
dimensional stretching function to all grid lines but vary the parameters that control the location 
and amount of clustering from grid line to grid line. Stretching functions such as those developed 
by Vinokur3 can be implemented in this fashion. 

The multidimensional stretching functions introduced above can be used with two-, four- and 
six-boundary methods. Below, we illustrate how they can be used with the four-boundary method 
via the following six steps (see Reference 2 for details of the four-boundary method): 
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1. Obtain parametric description of the four boundary surfaces of the spatial domain that are 
to be mapped correctly; e.g. 

rl(v,  0 at 5=0, r2(q, 0 at 5 = 1 ,  

r3(& 5) at q = O ,  r4(t, 5) at q =  1. 

2. Select stretching functions that give the desired grid-point distribution along the edges of the 
spatial domain; i.e. select the functions foe, f l o ,  to, and f l l  in equations (1) and (2) and 
similar functions for the q- and [-co-ordinate directions. 

3. Construct a multidimensional stretching function f ( t ,  q, [) for the <-grid lines by using 
equation (1) or (2). Similarly, construct a multidimensional stretching function 4(<, q, () for 
the q-grid lines and f(t, q, [) for the c-grid lines. 

4. Define new parametric descriptions of the boundary surfaces as follows: 

5. Select ar(t=O, q, C)/a<, ar(5 = 1, q, [)/at, ar(5, q=O, [)/i3q, and ar(& q =  1, {)/a?, such that 
they are orthogonal to fl(q, l),  fz(q, 0, i 3 (5 ,  [) and f4(5, C), respectively (except near the 
edges as discussed in the Appendix). 

6. Generate the grid points in the physical domain as follows: 

xijk [ .h;h)=r(ti, q j ,  c k ) ,  (6) 

i- 1 
ZL- 1’ 

ti=----- i = l ,  . . . ,  ZL, 

j - 1  
qi=-  j= 1, . . . , JL, JL-1’ 

In the above equation, IL, JL and KL are the number of grid points in the 5-, q- and [-direction, 
respectively. 
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Grid generation with multidimensional stretching functions as described above offers signific- 
antly more control over how grid points can be distributed than with one-dimensional stretching 
functions. This increased control comes with only a minor increase in complexity. 

SPECIFICATION OF DERIVATIVES AT THE BOUNDARIES 

When the two-, four- and six-boundary methods are used to generate grid systems, first-order 
derivatives at boundaries [e.g. ar(( =0, q, [)/a< and ar(t, q = O ,  C)/aq in equations (8) and (9)] 
must be specified. Since grid lines should be orthogonal at boundaries, previous investigators 
have specified these derivatives as follows: 

where 

In equation (ll),  the factors K , ( q ,  [) and K3(5 ,  &-henceforth referred to as K-factors-are 
specified by the user. The K-factors are intended to control the magnitudes of the first-order 
derivatives which in turn control the curvature of the grid lines near boundary surfaces. However, 
the magnitudes of these derivatives depend not only on the K-factors but also on the magnitudes 
of the vectors t ,  and t,, which in turn depend on the geometry of the boundary surfaces at t = O  
and q = O  and on the grid spacings on those surfaces. Therefore, for complex geometries, the 
effectiveness of K-factors as control parameters is greatly reduced. 

In order to enhance the effectiveness of the K-factors as control parameters, an alternative way 
is proposed for specifying the derivative terms ar(g=o, 1, C)/J< and ar(5, q =0, C)/aq. This 
alternative approach ensures that the K-factors alone determine the magnitude of the first-order 
derivatives. This is achieved by normalizing the vectors orthogonal to the boundary surfaces; i.e. 
the derivatives are specified as 

where el and e, are unit vectors orthogonal to the boundary surfaces at { = O  and q = O ,  
respectively. These normalized vectors are given by 

tl el =-, 
It, I (144 

t3 e3=-, 
It31 

where t ,  and t, are given by equation (12). 
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At this point, it is important to note that while the specification of the first-order derivatives is 
relatively straightforward for the two-boundary method, special attention is required for the four- 
and six-boundary methods. This is true in particular if the boundary surfaces in the physical 
domain intersect non-orthogonally. In such cases, if proper care is exercised when the first-order 
derivatives are specified, then the grid can be made orthogonal at the boundary surfaces except in 
narrow regions next to the edges where boundary surfaces intersect non-orthogonally. If proper 
care is not exercised, the orthogonality may not be achieved anywhere on the boundary surface, 
even in regions far away from the edges. In order to achieve orthogonality away from the edges, 
the first-order derivatives that are specified must satisfy certain geometrically imposed con- 
sistency conditions that ensure continuity of these derivatives at the edges. The set of consistency 
conditions for the four-boundary method is derived in the Appendix, and a similar set of 
conditions can be derived for the six-boundary method. 

To illustrate how first-order derivatives should be specified to ensure orthogonality, consider 
again the terms ar(5 =0, q, ( ) /at  and ar(5, q=O, c)/aq in equations (8) and (9). When the four- 
boundary method is used, these derivatives must be chosen such that the geometrically imposed 
consistency conditions given by equations (26), (27), (29) and (30) in the Appendix are satisfied. 
This can be accomplished by specifying the first-order derivative terms as follows: 

(16) 
where h ,  and h2 are given by equation (3), and el and e3 are given by equation (14). With the 
above approach, each boundary surface is divided into three regions: an interior region, a narrow 
interval or strip that separates the interior region from the edges of the boundary surface, and the 
edges themselves. In the interior region, ar(( =0, q, C)/a( and dr(5, q=O, C)/aq are specified such 
that they satisfy equations (13) and (14) which ensure orthogonality in that region. At the edges 
where the boundary surfaces intersect, the terms are specified such that the consistency conditions 
given by equations (26c), (26d) and (27cH27h) are satisfied. On the intervals adjacent to the edges, 
the terms are constructed as functions that bridge between the specified terms at the edges and 
those in the interior in a manner such that the consistency conditions given by equations (29) and 
(30) are satisfied. When equations (15) and (16) are used, grid lines will intersect boundary surfaces 
orthogonally everywhere except on the narrow strips near the edges where boundary surfaces 
intersect non-orthogonally. 

BLENDING FUNCTIONS BASED ON TENSION SPLINE INTERPOLATION 

One difficulty frequently encountered when using algebraic grid generation methods is that the 
cubic polynomials used as blending functions in Hermite interpolation to define connecting 
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curves often produces grid lines with too much curvature. Too much curvature can lead to 
problems such as excessive skewness of the grid or overlapping grid lines. To overcome this 
difficulty, new blending functions based on tension-spline interpolation are developed in this 
study to replace the cubic polynomials in the Hermite interpolation. The most attractive feature 
of the tension-spline blending functions developed here is that as the tension parameter is 
increased from zero to infinity, the blending functions vary from being cubic polynomials to being 
linear polynomials. Thus, the new tension-spline interpolation offers significantly increased 
control over the shape of grid lines in the grid system. We first derive the new blending functions 
for an arbitrary variable, and then its application to algebraic grid generation is illustrated. 

Suppose the variable X is a function of the parameter s on an interval [0, 11, but only X(O), 
X(1), X’(0) and X’(1) (X‘ denotes dX/ds) are known, and a tension-spline interpolation of X(s) 
on the interval [O, 11 is sought. A tension-spline interpolation of X(s) is traditionally written in 
terms of X(O), X(1), Xff(0) and X”(l), where X” =d2X/ds2, as follows: 

Xff(l)sinh(os) [ X:!l)] 
s, (17) 

Xff(0) sinh[o( 1 -s)]  
a2 sinh(a) X(s)= +[x(0)-F] (l-’)+ a2sinh(a) + X(1)-- 

where a is the tension parameter. By differentiating equation (1 7) and evaluating the resulting 
equation at the end points s=O and s=  1, we obtain 

X f ( 0 ) =  - ( W  a sinh(a) a sinh(a) 

(18b) 
X“(0) +Xf’(l)cosh(a) [ Xi!l)] 

X(0)-- + X(1)-- . X” (0) and 

Xf(l)= - asinh(a)-[ a2 ] a sinh(o) 

The above two simultaneous equations can be solved to give expressions for Xf’(0) and Xff(l) in 
terms of X(O), X(1), X f ( 0 )  and Xf(l). Substituting the resulting expressions in equation (17) gives 

X (s) = X (0) h (s) + X ( 1) h (s) + X (0) h3 (s) + X ’ ( 1) h4 (s), (19) 

where sinh[a(l -s)] -sinh(as) 
h,(s)=c,(l-s)+c,s+c, sinh (a) 

sinh[a(l -s)] -sinh(as) 
sinh (a) h,(s) = c1 s + c2(l -s) - c2 

sinh[o(l -s)]] +c4 [ s-- sinh(as)], 
sinh(a) sinh (a) 

sinh[a(l sinh(a) -s ) ]  ] - c3 [ s - S], 
sinh(a) 

2 sinh(o) - a cosh(o) - a’ c2 = 

-U 
c -  sinh(a), 
3-(/?2-a2) 

c -  ’ sinh(a), 
4-(/?2 -aZ )  
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a = a cosh( a) - sinh( a), 

f l= sinh( a) - a. 
(2W 

(21f) 

Equations (19)-(21) can be used to interpolate any function on the interval [O, 11, when the 
function’s values and its first derivatives are known at the end points of the interval. The 
application of these equations to algebraic grid generation is straightforward. For example, with 
the two-boundary method,2 we obtain 

(22) 
where h, ,  h,, h, and h4, are given by equations (20) and (21). The above equations have the same 
form as if Hermite interpolation was used except for the definition of the blending functions. 
However, the control over curvature of grid lines is increased considerably because as B+O, h,, 
h,, h3 and h, approach cubic polynomials, and as 6-00, hl(s)+(l-s), h2(s)+s, h,(s)+O and 
h4(s)+0, giving rise to linear blending functions. 

RESULTS 

In this section, two grid systems generated by using the techniques developed in this study are 
presented. 

Figure 2 shows a three-dimensional grid system where grid points are clustered towards one 
corner of the domain. This grid system was generated with the four-boundary technique in 

Figure 2. Multidimensional stretching function for clustering about a comer point in a three-dimensional grid system 
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conjunction with multidimensional stretching functions that were constructed using equation (1). 
Note that in this grid system, grid lines intersect the boundary surfaces orthogonally. Also note 
that this grid system could not have been generated by using one-dimensional stretching 
functions. 

As a more stringent test for the techniques developed in this study, a grid system was generated 
for the coolant passage geometry shown in Figure 1. This geometry is very complicated with 
turning and twisting in three-dimensions coupled with serpentine passages and pin fins. The grid 
system sought for this complicated geometry was a partially continuous composite grid. Com- 
posite grids with the degree of continuity sought here are the most difficult to generate, but once 
they have been generated, they are the easiest to obtain solutions on with finite-difference or 
finite-volume methods.* 

Figure 3 shows how the coolant passage was partitioned into 19 blocks or zones for the 
purpose of grid generation. The partitioning that is shown was deemed necessary in order to 
generate an acceptable grid system. A single grid system was generated for each of the partitions 
and then patched together to form a partially continuous composite grid. Figure 4 shows the grid 
system for the partition number 18. The entire grid system for the coolant passage is shown in 
Figures 5 and 6. A detailed description of the grid generation process for this complicated 

Zone 4 

I I 
-..A---. 

Zone 5 

zone3 --- 

Zone 19 

Zone 14 

Zone 10 

zdne 12 

Figure 3. Partitioning of the coolant passage geometry into zones for grid generation 
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Figure 4. Grid system generated for zone 18 (see Figure 3) 

Figure 5. A two-dimensional view of the grid system for the coolant passage 
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Figure 6. A three-dimensional view of the entire grid system for the coolant passage 

geometry is given in Reference 4. This example demonstrates the usefulness of the three methods 
presented in this study to enhance control of grid-point distribution. 

CONCLUDING REMARKS 

In this paper, three techniques have been presented to enhance control of grid-point distribution 
in a class of algebraic grid generation methods known as the two-, four- and six-boundary 
methods. In addition to these three techniques, a set of consistency conditions was derived that 
must be satisfied by all user-specified data employed in the grid generation process. The 
usefulness of the techniques developed in this study was demonstrated by using them to generate 
two grid systems, including a three-dimensional grid system for the coolant passage of a radial 
turbine blade with serpentine channels and pin fins. 
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APPENDIX: CONSISTENCY CONDITIONS FOR USER-SPECIFIED DATA IN 
ALGEBRAIC GRID GENERATION 

When using the four- and six-boundary methods, we need to specify curves or surfaces that 
describe the boundaries of the geometry and the derivatives at those boundaries. Since, for these 
two methods, the boundary curves or surfaces intersect, the data that we specify should satisfy 
certain consistency conditions. These conditions for the four-boundary method will be derived in 
this appendix. Note, while some of the conditions are obvious, others are not so obvious. 
Nonetheless, it is necessary to be aware of all these conditions in order to exercise maximum 
control over grid-point distribution. The consistency conditions formulated here have not been 
reported before. 

Consider the four-boundary method given by equations (6)-( 10). To facilitate discussion, 
equations (8) and (9) are recast here as 

r1 (5 , s9  0 = rl(tl9 O h 1  ( 5 )  + r2(tl9 O h 2 ( 5 )  + Sl (s9 C ) h 3 ( 8  + SZ(% W 4 ( 0 9  

w 5 ,  ‘I, O=[r3(5, O-r’(59 s=o, OIh1(tl)+[r4(t, O - r ’ ( 5 , s = 1 , l ) 1 ~ 2 ( s )  
(234 

where 

The terms rl ,  r2, r3 and r4 are parametric representations of boundary surfaces, and sl ,  s2, s3 and 
s, are derivatives transverse to the boundary surfaces. These terms are the data that need to be 
specified, and this data must satisfy certain conditions for consistency. All of these consistency 
conditions can be found by evaluating r(5, q, [) and its derivatives at boundaries of the domain. 
For example, evaluating r(5, q, [ )=r’(t ,  q, [)+Ar(<, g, c )  at t=O gives‘[note that h,((=O)=l ,  
h2(g = 0) = 0, h3( g =0) =0, h4(t = 0) = 0] 

r(t=O, s, O=r1(4 0- Cr,(s =o, O-rdt=O, C)Ih1(s)- Crl (tl= 1 9  C)-r4(< =o, Olh,(tl) 

Since r1 (g, C) = r( ( = 0, q, C) by definition, the data rl , r3, r4, s3 and s4 must satisfy the following 
conditions in order for equation (25) to give the correct results: 

r1(tl=O, C)=r,(t=O, 0, (264 

r l ( V = l ,  l)=r4(g=o, (26b) 
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Similarly, evaluating r( 5 ,  q, C )  at other boundaries gives additional conditions, namely, 

r,(q=O, O = r d t =  1,0,  (274 

r,(q=1,O=r4(t=1,0, (27b) 

Note, the conditions given by equations (26) and (27) are conditions of continuity of the 
geometry at the edges where two boundary surfaces intersect. Obviously, the boundary of the 
geometry must be continuous at the edges, which is the condition given by equations (26a), (26b), 
(27a) and (27b). The meaning of conditions given by equations (26c), (26d) and (27cH27h) is that 
at the edges, the derivative that we specify transverse to one of the boundary surfaces must be 
tangent to the intersecting boundary surface. 

The rest of the consistency conditions that the data must satisfy can be found by evaluating the 
derivatives of r(<, q, C )  at the boundaries, for example, 

Since by definition, s1 ( q ,  C )  = ar(t = 0, q, C)/a5, the data must satisfy the conditions given by 
equations (27e) and (27g), and in addition 

(294 
asl(,,=o,C) - as3(5=o, C) 

all a t  ' 
- 

Note, the conditions given by equation (29) are simply that 

and 
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By evaluating the derivatives of r(<, q,  () at other boundaries, we arrive at additional conditions 
that the data must satisfy, namely, 

The conditions implied by equations (26) and (28)-(30) are the consistency conditions that the 
data used to define the transformation r(<, q, () must satisfy in the four-boundary method. If any 
of these conditions is not satisfied, then one can have difficulties in achieving the desired results in 
the grid generation. For example, if the conditions given by equations (29) and (30) are not 
satisfied, then one can have difficulty in achieving orthogonality at the boundaries. 

By using the approach illustrated above for the four-boundary method, consistency conditions 
for the six-boundary method can also be derived. There are no consistency conditions for the two- 
boundary method since it does not involve intersecting boundary curves or surfaces. 
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